3.7.6 \(\int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [606]

3.7.6.1 Optimal result
3.7.6.2 Mathematica [A] (verified)
3.7.6.3 Rubi [A] (verified)
3.7.6.4 Maple [B] (verified)
3.7.6.5 Fricas [F]
3.7.6.6 Sympy [F]
3.7.6.7 Maxima [F]
3.7.6.8 Giac [F]
3.7.6.9 Mupad [F(-1)]

3.7.6.1 Optimal result

Integrand size = 25, antiderivative size = 229 \[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d}-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d} \]

output
2*(a-b)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c) 
^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a 
*(1+sec(d*x+c))/(a-b))^(1/2)/a/d-2*(a-b)*cot(d*x+c)*EllipticF((a+b*cos(d*x 
+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)* 
(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d
 
3.7.6.2 Mathematica [A] (verified)

Time = 2.22 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.89 \[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {\sqrt {a+b \cos (c+d x)} \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (\sqrt {\cos (c+d x)} \sqrt {1+\cos (c+d x)} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )-\sqrt {\cos (c+d x)} \sqrt {1+\cos (c+d x)} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )-\sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \sin (c+d x)\right )}{d \sqrt {\cos (c+d x)} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}}} \]

input
Integrate[Sqrt[a + b*Cos[c + d*x]]/Cos[c + d*x]^(3/2),x]
 
output
-((Sqrt[a + b*Cos[c + d*x]]*Sec[(c + d*x)/2]^2*(Sqrt[Cos[c + d*x]]*Sqrt[1 
+ Cos[c + d*x]]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - Sq 
rt[Cos[c + d*x]]*Sqrt[1 + Cos[c + d*x]]*EllipticF[ArcSin[Tan[(c + d*x)/2]] 
, (-a + b)/(a + b)] - Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x] 
))]*Sin[c + d*x]))/(d*Sqrt[Cos[c + d*x]]*Sqrt[(a + b*Cos[c + d*x])/((a + b 
)*(1 + Cos[c + d*x]))]))
 
3.7.6.3 Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 3274, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3274

\(\displaystyle a \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(a-b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3295

\(\displaystyle a \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}\)

input
Int[Sqrt[a + b*Cos[c + d*x]]/Cos[c + d*x]^(3/2),x]
 
output
(2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d* 
x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Se 
c[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) - (2*(a 
- b)*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(S 
qrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + 
d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d)
 

3.7.6.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3274
Int[Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[(c - d)/(a - b)   Int[1/(Sqrt[a + b*Si 
n[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Simp[(b*c - a*d)/(a - b) 
Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]] 
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 
3.7.6.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(769\) vs. \(2(213)=426\).

Time = 10.10 (sec) , antiderivative size = 770, normalized size of antiderivative = 3.36

method result size
default \(-\frac {2 \left (\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}-1\right ) \left (-\sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, F\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a -\sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, F\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) b +\sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a +\sqrt {-\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\, \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{a +b}}\, E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) b +\left (\csc ^{3}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{3} a -\left (\csc ^{3}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{3} b +a \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )+b \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right ) \sqrt {\frac {\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}}}{d \left (\left (\csc ^{2}\left (d x +c \right )\right ) a \left (1-\cos \left (d x +c \right )\right )^{2}-\left (\csc ^{2}\left (d x +c \right )\right ) b \left (1-\cos \left (d x +c \right )\right )^{2}+a +b \right ) {\left (-\frac {\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}-1}{\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1}\right )}^{\frac {3}{2}} \left (\left (\csc ^{2}\left (d x +c \right )\right ) \left (1-\cos \left (d x +c \right )\right )^{2}+1\right )}\) \(770\)

input
int((a+cos(d*x+c)*b)^(1/2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 
output
-2/d*(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)*(-(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1 
)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+ 
a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a- 
(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2 
-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-cs 
c(d*x+c),(-(a-b)/(a+b))^(1/2))*b+(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)* 
((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+ 
b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a+(-csc(d* 
x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x 
+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c) 
,(-(a-b)/(a+b))^(1/2))*b+csc(d*x+c)^3*(1-cos(d*x+c))^3*a-csc(d*x+c)^3*(1-c 
os(d*x+c))^3*b+a*(csc(d*x+c)-cot(d*x+c))+b*(csc(d*x+c)-cot(d*x+c)))*((csc( 
d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(csc(d*x+ 
c)^2*(1-cos(d*x+c))^2+1))^(1/2)/(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c 
)^2*b*(1-cos(d*x+c))^2+a+b)/(-(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)/(csc(d*x+c 
)^2*(1-cos(d*x+c))^2+1))^(3/2)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)
 
3.7.6.5 Fricas [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="fricas")
 
output
integral(sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)
 
3.7.6.6 Sympy [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a + b \cos {\left (c + d x \right )}}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((a+b*cos(d*x+c))**(1/2)/cos(d*x+c)**(3/2),x)
 
output
Integral(sqrt(a + b*cos(c + d*x))/cos(c + d*x)**(3/2), x)
 
3.7.6.7 Maxima [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)
 
3.7.6.8 Giac [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="giac")
 
output
integrate(sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)
 
3.7.6.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a+b\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{3/2}} \,d x \]

input
int((a + b*cos(c + d*x))^(1/2)/cos(c + d*x)^(3/2),x)
 
output
int((a + b*cos(c + d*x))^(1/2)/cos(c + d*x)^(3/2), x)